
The Euler-Maclaurin Functional for 
Functions with a Quasi-Step Discontinuity 

By Israel Navot 

1. Introduction. Following previous extensions, [1], [2], of the form assumed 
by the Euler-Maclaurin functional 

n-1 /L 

(1) E{}E a Z) E f + -nj f(x) dx; 0 < a 1, 

for functions f(x) with integrable branch, logarithmic and both branch and logarith- 
mic singularities at x = 0, consideration is now given to this functional for func- 
tions f(x, a) which depend on a parameter a in such a manner that for a = 0 we 
have 

(2) Limf(x, 0) -f(0, 0) + C 
O<x->O 

where C F 0 is a numerical constant. For functions f(x, a) of this type it is generally 
true that for small values of a their derivatives with respect to x oscillate strongly 
in the vicinity of x = 0, the peaks of the successive derivatives being proportional 
to successive negative powers of a. Obviously, therefore, when n in (1) is related to 
a so that na is of the order of unity, or less, the negative powers of na in the ordinary 
Euler-Maclaurin asymptotic series may render it useless for the numerical evalua- 
tion of the integral or sum in (1) since it may diverge from the beginniiing of the 
series. 

Of the various possible quasi-step discontinuities, we consider here that intro- 
1x 

duced by the function tan -, which is perhaps the simplest analytically. The sub- 

sequent discussion and examples will show that some other types of quasi-step 
discontinuities may be treated similarly. 

2. Derivation of the Required Formula. Let 

(3) f(x, a) = g(x) tan- ?; a > 0. 
a 

where g(x) is an arbitrary real continuous function, with continuous derivatives up 
to the order 2m, at 0 < x ? 1. Setting 

g(x) = P2m-l(X) + Q2m(X); 

P2m-l(X) = 2m-1k)k= ( ! Q2m(x) = OX (2m)() (x - )2m-1 d 
k=O k ! (2m - 1)!1 
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and x = y/n, we have by an analysis similar to that leading to equation (4) in [1] 

E{f}a _ f (v + a) ()-nf'oaf(x, a) dx 

( B,(a) (_) f("_1)(1 a) + : Ck(a, na) (1)k() (O) + P2m. 

In (4) B,(a) is Bernoulli's polynomial of degree ,u while 

Ck(a,na) ak tan- - f yk tan' Y dy - B;(a) d' 
(5) na 'nala-A! dy-' 

ktan J B2m(a )! dy2m (k tan ady, 

where B2m(y) is the periodic Bernoullian function of order 2m. Ck(a, na) is inde- 
pendent of m(k _ 2m - 1) and for a = or a = 1, which are mainly of practical 
interest, is readily transformed into 

(na ) 2+1 
- 

()1~ 
2na$-;[log na 1 

na 

+ (-)Y f y2vl{ f(a + iy) + VI/(a - iy)} dy 
(6) 0 

--Bl(a) -2; for p = 0 

+{Z-1B2v7 a)()2P+l E (- _ B2p-2(a)(na ; for p = 1, 2, m-1 

whenk= 2p;p = 0,1, m m- 1,andinto 

P(na) 2+ r pn p+ 
_ _ ) 7 + (_ ((a + iy) - (a+-iy) dy 

- + (-)PB,(a) (p + 1 2p + 2 2p+ 

when k = 2p + 1; p = 0, 1, m - 1. iI(z) is the logarithmic derivative of the 
Gamma function. The remainder P2m iS given by 

1\ 2m-1 9(2m-1) (0) 2m 

(8) P2m = C2m-l(a na) (2m -1)! k 

where 
21 

__-1_(k)_(0) Am(a -nx) - B2m(a) d2m 

(a = (~)~kO) f~B a_-k! (2m)! dx2m 

( 9a)tan's) dx; k=0O,1, * 2m-2, 

2m12m-1 =(2m-1) (0) 

(9b) f (2m - 1)! 
B2ma -nx)- Bm(ad 

m 
(2m-1tan-') dx - B2m (a)~ ff~~2m 

(2nm)B2 a)dX2M x 2m 2J 
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C2m = 
0 p1 B2.m(a- nx) - B2m(a) d2wn 

(9c) \n/ Jo (2m)! d X2m 

(9c)X 2m 
r (x - T)2 tan-' X dT dx. {f(2m - 2m- 

1-dTda 

In some cases to be discussed soon, the term containing C2mi1(a, na) should be 
deleted from P2N and lumped together with the other terms of this type. 

3. Discussion of Formula (4) and the Numerical Evaluation of the Coefficients 
Ck(a, na). The asymptotic summation formula (4), which is an error formula for 
the approximate evaluation of an integral by summation or the approximate evalua- 
tion of a finite sum by integration, is valid for all non-negative values of a and integer 
values of n. Its main use and advantage over the ordinary EM asymptotic summa- 
tion formula is when na remains bounded, or is of a smaller order than n, as n -? oo, 
or when n is relatively large, and fixed, and a -o 0. In these cases, as pointed out 
before, the remainder in the ordinary EM formula may absolutely increase with 
m even for small values of m. On the other hand, when na is of the order of n as 
n -?,* 00 the accuracy yielded by the ordinary EM summation formula and by (4) 
(after deleting the term containing C2ml(a, na) from the remainder P2m, and lump- 
ing it with the correction terms) is of the same order, (1/n) 2m-1 as will be shown in 
the following section where P2mn is estimated. Practically, however, the ordinary 
EM summation formula should be preferred in that case since the coefficients B, (a); 
A = 1, 2, ... 2m - 1, which depend only on a, are more conveniently available 
than the coefficients Ck(a, na); k = 0, 1, * * 2m - 1. The evaluation of Ck(a,na) 

from equations (6) and (7) for a = 2 and a = 1 is straightforward except for the 
integrals. The author is not aware that these integrals have been tabulated but 
rapidly convergent series expansions are readily available for them. Thus, for 
0 < n? _ 1 we have 

rna 

(.)P f '2P1 {1(a + iy) + i1(a - iy)} dy 

= ( _ p Ay22 _ t _ l dy 
a a+ity a-iyf 

noc 
(10) + (-)Pf y-{4(1 + a + iy) + 4(1 + a -iy) dy 

= a 2p {E ( 
- a -) tan-l a 

+ ()P(n) 2p+1 E ()" 2A(1 + a) (na)2,' 
and0 (2p)! 4 + 2; + 1 

and 
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na 1 

(- Jo 
p _ I+ 2ip(a + iy)-4+(a -iy) } dy 

= _p 
na 

82p+1 {_ + -}d 

The) radii of) conve e Y 2 (l + a + +y) -(l + a-iy) dy 

values of 2(21+1)! 21+2ina 

{aP(n)y tan_ln 
,=o 2, + 1a a 

( ) ( ) 
;40() (2,ui + 1)! 2p + 2ss + 3 - 

The radii of convergence of the series in (10) and (11) are 1 + a and the numerical 
values of the coefficients may be obtained from tables [3] of A(y) (x) (,i = 0, 1, 2, ..) 
or with the aid of a table [4] of Riemann's zeta function c(s) = (s, 1), use being 
also made of the functional relation 

P(s, 1) = (2s - 1) -(s 1). 

For 1 < na < 2 we have to add 

(12a) (1 + a)2 { 2( +1(1+a) - tan-' 

and 
2p1+ ) 2u+f (1+na 

(12b) 2+11+a)) - tan'- x 
(12b) {z-o 

~~~A=2ji + I 1 + a. 1 + a} 

to (10) and (11) respectively, and to replace (/) (1 + a) 4,! in the series in these 
equations by ,6() (2 + a) 4,! which is related to it by 

(13) {(Z)(2 + a) = (-)A + VI(A) + a). 0,1, .. 
i! (1 +~)M /A! 

The radii of convergence of the new series are 2 + a. The evaluation of the integrals 
defining Ck(a, nx) may theoretically be carried out in this way for any value of 
na, anid their asymptotic behavior as na increases may thus be established. 

4. Estimation of the Remainder P2m. Not very sharp but generally sufficiently 
good bounds, valid for a = ' and a = 1 and easily obtained from equations (9), 
are the following: 

1 2M 1 
k+1 _B 2__ a_g__k______ 

(14a) e~~~ 1kIG) Oka ( 14a) (n\ 2m(k + 1)! 
? < Ok < 1 k = O,1, ..* 2m-1. 

(14b) 2m + )B2m(a)g(2m l)(0) ) I (14b) j 20 I_(Y' )< 02m-1 < 1.- I C2-l I< n2m 2 (2m)!0 
2l?(1 \2m-1 {?+Na(2+ 1 B2.(a)g(lm)(~) 

(14c) | < I 02m 2+ Na a m + 2m- 1 (2m) ! 

? < 02m < 1; N112 = 3 N, = 2; 0 < < 1. 
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Equations (14) provide an upper bound for Zk.O Ek. Hence, referring to equation 
(8), we see that except for the first term in it, P2m decreases as ( 1/n)2 2-1 for a fixed m. 

5. A Numerical Example. As a simple application of formula (4) we shall evaluate 
numiierically the integral 

I = -f1 tan-l 1 + t 1 -1 tan- 2-x x 
(15) 2 Li~an- tan- dt = ta- 

tan1.- dx, ( 150) '2 i a ae a aeo 

a! = 103 3, 

by the trapezoidal rule with n = 10. The approximating sum to eight decimals 
yields 

I 
1 1 / 

(16) I E tanl2 - ta1n- v + ? (tan1 = 2.33846010. 
n_vl na na 2n \ 

Since all the odd derivatives of the integrand at x = 1 vanish, the first two correc- 
tion terms are 

1 2 
-- Co(, na) tan _ = 0.11543535 

ft a 
(17) 

7(-)C(1 a = -0.00000031. 2 2+ a 2 

The approximate value 2.45389514 of I thus obtained checks well (disregarding 
1oulnding errors) with its exact value to the same number of decimals computed 
from 

1 l { __ 1 a - ..tan-l - dx 

- (2 - 2) ?e log - (1 + log 2) ( ) -2 O(3) - 2.45389513 

6. Integrands with a Different Type of Quasi-Step Discontinuity. We shall 
now determine the correction terms in evaluating by the tangent-trapezoidal rule 
(a = or trapezoidal rule (a = 1) integrals of the form 

7r 

( 1o\ ~~~~~~~~~sin -x 
(19) I g(x) tan 2 dx 

where g(x) is an odd function of sin - x and a is a positive parameter. The quasi- 
2 

step discontinuity at x = 0 (which occurs here not in the integrand but in some 

odd derivative of it) is introduced by a different function, tan-l sin (irx/2) from 
a 

that inlvestigated previously. The vanishing of all the odd derivatives of the integrand 
at both x = 0 and x = 1 shows, as is well known [5], that the ordinary Euler- 
Miaclaurin summation formula is unable to provide correction terms since all of 
them vanish. Special methods are therefore required. Furthermore, the periodicity 
of the integrand calls for a comparison with the methods of Luke [6] and Davis 
[7], especially when Ina is less than ulnity. This will be made later. 
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Writing 

(20) f(x,) a fi(x,-) +f2(x, a) 

where 

f(x) = g(x) tan-' 2 
a 

(21 ) r (21) 2 = q(x) tan' 
a~~~~~e (sn ~ x - I x) 

f(, 2 a) (x) tan-'7r x, f2(x, a) = g(x) tan-' 
2 

+ si J 
7r 2ae 2 7 . 7r 

a + 2 Xsin 2 X 2 2 

we see that fi - a) is of the form of (3) while f2(x, a) can be expanded into a 

double series (which in the interval 0 < x < 1 converges absolutely and uniformly 
for all positive values of a) 

f2(x, a) = q(x){ - 3W3 + 5fW5- * 

(22) =g(x) {U( 1-V + V2- )-3U3(1-3V + 62- ) 

+5U5(1-5V + 15V- ***)- **} 
where 

/.7r 7r\ 
a 

_ (sin~x - X) 
ff=t2 2 J, 

a2 + x sin 7x 

(23) 
( 23 / 1r\ / 7r 7r 7 - inIxa ~sin -x a,) 

2 X m2- X2 x} U 2 2) 

a2+ (x) a2+ (7 ax) 

To evaluate the Euler-Maclaurin functional E{f2} a to an accuracy at which terms 
only up to, say, n-3 are retained, we write 

(24) E{f2}a = E{gU}a + El-gUV}a + E{gUS1,2 + gT3}a 

where 

(25) S,2 = V2 _ V3 + ; T3=-W3 + W5- 

For the first two terms of (24) we have from (4) 

9 sin x - x 
a 

09 
2na E{gU}a = -a -E * * tan' = c-C3 

,Oa 1 7r 2yx dax 7 ) 

(26) 2X a 

(_)3 g+ B (-) dxMl [qU]z=l + 36,1 (~3 dx) 
, z B-a) __ 
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alnd 

E{ -guv}a = a E _g -(sinl - x - tan x 
(27) ~~~~~9a2 2/2a)a 

-2 z) B(a) I1 [-gUV]L=d + 8662 A==1,2,4 ! \nj dxp1 - 

while for the third term of (24) we have from the ordinary Euler-Maclaurin formula 
[1] 

(28) E{gUJS112 + gT3}a = BU(!) (-n) d S,2 + gT3]T=l + R6. 
A=1l24 n2\l dxml 

56,1, 86,2 and R6 are of an order of magnitude not larger than n-5 and can readily 
be estimated. 

The correction terms in evaluating ( 19) by the tangent-trapezoidal or trapezoidal 
rule to an accuracy of n-4 may therefore be obtained from 

fI (x,a) dx - nZf ( a a) ?+ IBi(a)fi (1, a) 

(29) 2 
+ 2 gk () Ai,a 

= - z( , E 24( ,, (C n - 
2) a P6 

and 

f2 x d -) 1 f (- a a)+ ? B(a)f2(1a) 

(30) 
/1 

4 l a 2 Ig (0) 
-7r 

2 

IlB(M)(1a) 
= _ _y /ea C3 'ar, / 3! \2 2 a) 

- 6 (6,1 6,2+ 6) 

onl adding these equations. We thus obtain 

. r . p + aX 
sin-Ix in-1 ?a)tnsin 

g (x) tan-1 2 dx - I 
1 g (v + a) tan-' 92 n) 

og~xtan a n n ia 

+ - Bl(a)g(1) tan-' - 
(31) n a 

= 
- 

EC (a2 n) (?)-na k=1,3 7r k! 
k~3(fl~ k+1 4 /9 2(k)(o) 

- (2j a C3 (a, a) na () ()1) + remainder 

where the remainder is of ani order not larger than n 
As a numerical example we choose 

g(x) = sin x, a= , 2-a =1o-2 n =10. 2 7r 
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The first three correction terms to nine decimals are 

-(1)2 C (a, 2 nfa) - = 
0.001385560 

C3 (a, 
2 

f) na (2) = 0.000000837 

- a C3 (a, f) na (2) = 0.000000023 

and their sum is 0.001386420. The exact value of 

7r 

F1 . 1r ~sin 
- x 

siln- x -tan dx 
2 ~~a 

(32)-ta 1 i 1 

(32) -n ( sill (2 - n)si tan-' (2 n) +ltail-' 

n 1 =i2 na 2 

to the same number of decimals computed from 

7r 

(33) f rsinrx tan-' 2 dx = 1?2-a 
0 2 xa 

and from a direct computation of 

n tE, sini (2- .n) . tan-' ( )+ - tan'!h 
P= i 2n a 2 a 

is 0.001386421. The neglected remainder in the correction is thus of an order not 
larger than the rounding errors. 

It is interesting to compare the approximation to (32) given by the correction 
terms above with some other estimates of it. The point of departure in both [6] 
and [7] for obtaining such estimates is the Fourier series expansion of the integrand, 
i.e. 

7r 

sill x)tan-' e- e cos 7rX + - e cos 27rx + 

-(e cos 7rw + e3 cos 27rx + -e cos 37rx + 

where 

(35) o- = sinh-1 a > 0. 

Observing that 
1-; it= 2nk, 

(36) cos Alx dx -- { o 7 + 2 + 2 cos II}= ;al thri 
n P.1 n 2 2 CS0; all other in- 

(36) f cos~~~xdx ! cos~~~ +1+1 l;~~tegr alesofI 
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we have for (32) 

00 e) 4-nk-1a e-4nk+lf (37)~~~~~~ 1 {Ink I 4n } 

To obtain a good approximation to (32) by summing this series, after substituting 
the numerical values of n and o-, would require quite a large number of terms to 
be taken. An estimate of (37) following [7] by considering the analytic continuation 
of 

f( =1 .r loga + i sin (7rx/2) l 2i 2 a 
* 

-i sin (7rx/2) 
(38) 

_1 7r sinh o-+i sin (x/2) 
- sin- x l 

2i sin 2 log sinh a - sin (7rx/2) 

in the z = x + iy plane and expressing (37) as a contour integral gives 

00 e-(4nk-l) e-(4nk+l)of < 2exp.(-7rrn) 2 
(3) Y,l4k1 In <| zm,ax 

If (z, a) i1-x -rn for all O < -r < - ,' k1 ~4nk - 1 4mb +IJ = 1 , - exp. (-wrTn) 

where Ir designates the line x + ir, - oc < x < co. Since irrn is rather small, this 
also is not helpful in estimating (32). 
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